Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Neurobiol Exp (Wars) ; 84(1): 59-69, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587323

RESUMO

Nicotine is a psychostimulant that induces neurochemical and behavioral changes upon chronic administration, leading to neurodegenerative conditions associated with smoking. As of now, no preventive or therapeutic strategies are known to counteract nicotine­induced neurodegeneration. In this study, we explore the neuroprotective effects of crocin, a bioactive agent commonly found in saffron - a spice derived from the flower of Crocus sativus - using a rat model. The dose­dependent effects of crocin were evaluated in nicotine­induced neurodegeneration and compared with a control group. Neurobehavioral changes, assessed through the elevated plus maze, the open field test, the forced swim test, and the Morris water maze, as well as oxidative stress in the hippocampus, were evaluated. Interestingly, nicotine administration resulted in depression, anxiety, and abnormal motor and cognitive functions, while crocin treatment protected the rat brain from these abnormalities. The beneficial effects of crocin were associated with reduced oxidative stress biomarkers such as malondialdehyde, along with increases in superoxide dismutase, glutathione peroxidase, and glutathione reductase activities. These results demonstrate that crocin can mitigate nicotine­induced neurodegeneration by reducing oxidative stress, potentially offering a protective measure against neurodegenerative effects in smokers.


Assuntos
Crocus , Ratos , Animais , Crocus/química , Crocus/metabolismo , Nicotina/farmacologia , Carotenoides/farmacologia , Carotenoides/uso terapêutico , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo
2.
J Biochem Mol Toxicol ; 38(1): e23611, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38084605

RESUMO

BACKGROUND: Nanotechnology and its application to manipulate herbal compounds to design new neuroprotective agents to manage neurotoxicity has recently increased. Cur-ZnO conjugated nanoparticles were synthesized and used in an experimental model of ketamine-induced neurotoxicity. METHODS: Cur-ZnO conjugated nanoparticles were chemically characterized, and the average crystalline size was determined. Forty-nine adult mice were divided into seven groups of seven animals each. Normal saline was given to control mice (group 1). Ketamine (25 mg/kg) was given to a second group. A third group of mice was given ketamine (25 mg/kg) in combination with curcumin (40 mg/kg), while mice in groups 4, 5, and 6 received ketamine (25 mg/kg) plus Cur-ZnO nanoparticles (10, 20, and 40 mg/kg). Group 7 received only ZnO (5 mg/kg). All doses were ip for 14 days. Hippocampal mitochondrial quadruple complex enzymes, oxidative stress, inflammation, and apoptotic characteristics were assessed. RESULTS: Cur-ZnO nanoparticles and curcumin decreased lipid peroxidation, GSSG content, IL-1ß, TNF-α, and Bax levels while increasing GSH and antioxidant enzymes like GPx, GR, and SOD while increasing Bcl-2 level and mitochondrial quadruple complex enzymes in ketamine treatment groups. CONCLUSION: The neuroprotective properties of Cur-ZnO nanoparticles were efficient in preventing ketamine-induced neurotoxicity in the mouse brain. The nanoparticle form of curcumin (Cur-ZnO) required lower doses to produce neuroprotective effects against ketamine-induced toxicity than conventional curcumin.


Assuntos
Curcumina , Ketamina , Nanopartículas , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Óxido de Zinco , Camundongos , Animais , Curcumina/farmacologia , Neuroproteção , Óxido de Zinco/toxicidade , Ketamina/toxicidade , Estresse Oxidativo , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle
3.
Int J Prev Med ; 14: 78, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37855005

RESUMO

Background: Many previous studies demonstrated that methamphetamine (METH) abuses can cause mood-related behavioral changes. Previous studies indicated neuroprotective effects of Selegiline. Methods: Seventy male Wistar rats were randomly divided into eight groups (10 rats in each group). Group 1 and Group 2 received normal saline and methamphetamine (10 mg/kg) for 21 days, respectively. Groups 3, 4, and 5 were treated simultaneously with methamphetamine and Selegiline with doses of 10, 15, and 20 mg/kg for 21 days. Groups 6 and 7 are methamphetamine-dependent groups which received 15 mg/kg of Selegiline with haloperidol (as D2 receptor antagonist) and trazodone (as 5-HT2 receptor antagonist) for 21 days, respectively. In days 23 and 24, elevated plus maze (EPM) and open-field test (OFT) were conducted to assess motor activity and mood (anxiety and depression) levels. Results: METH as 10 mg/kg causes reduction of rearing number, ambulation distances, time spent in central square and also number of central square entries in OFT. Also METH administration causes decreases of time spent in open arm and number of open arm entries and increases of time spent in closed arm and number of closed arm entries in EPM. In contrast, Selegiline (of 10, 15, and 20 mg/kg) inhibited behavioral effects of methamphetamine in both OFT and EPM. Also administration of haloperidol and trazodone inhibited these behavioral protective effects of Selegiline and caused decrease of OFT behaviors (rearing number, ambulation distances, time spent in central square, and also number of central square entries) and also caused decreases of spend times in open arm, number of open arm entries, and also increased closed arm time spending and number of entries in closed arm in EPM. Conclusions: Current research showed that Selegiline via mediation of D2 and 5-HT2 receptors inhibits METH-induced neurobehavioral changes, mood-related behavior, and motor activity disturbances.

4.
Mol Biol Rep ; 50(9): 7393-7404, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453963

RESUMO

BACKGROUND: Tramadol (TRA) is an analgesic prescribed for treating mild to moderate pains, the abuse of which has increased in recent years. Chronic tramadol consumption produces neurotoxicity, although the mechanisms are unclear. The present study investigated the involvement of apoptosis and autophagy signaling pathways and the mitochondrial system in TRA-induced neurotoxicity. MATERIALS AND METHODS: Sixty adult male Wistar rats were divided into five groups that received standard saline or TRA in doses of 25, 50, 75, 100, or 150 mg/kg intraperitoneally for 21 days. On the 22nd day, the Open Field Test (OFT) was conducted. Jun N-Terminal Kinase (JNK), B-cell lymphoma-2 (Bcl-2), Beclin1, and Bcl-2-like protein 4 (Bax) proteins and tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) were measured in rat hippocampal tissue. RESULTS: TRA at doses 75, 100, and 150 mg/kg caused locomotor dysfunction in rats and increased total and phosphorylated forms of JNK and Beclin-1, Bax, and Caspase-3. TRA at the three higher doses also increased the phosphorylated (inactive) form of Bcl-2 level while decreasing the unphosphorylated (active) form of Bcl-2. Similarly, the protein levels of TNF-α and IL-1ß were increased dose-dependently. The mitochondrial respiratory chain enzymes were reduced at the three higher doses of TRA. CONCLUSION: TRA activated apoptosis and autophagy via modulation of TNF-α or IL-1ß/JNK/Bcl-2/Beclin1 and Bcl-2/Bax signaling pathways and dysfunction of mitochondrial respiratory chain enzymes.


Assuntos
Tramadol , Ratos , Masculino , Animais , Ratos Wistar , Tramadol/farmacologia , Tramadol/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose , Autofagia , Hipocampo/metabolismo
5.
Neuropeptides ; 101: 102352, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37354708

RESUMO

BACKGROUND: Neurodegeneration is progressive cell loss in specific neuronal populations, often resulting in clinical consequences with significant medical, societal, and economic implications. Because of its antioxidant, anti-inflammatory, and anti-apoptotic properties, oxytocin has been proposed as a potential neuroprotective and neurobehavioral therapeutic agent, including modulating mood disturbances and cognitive enchantment. METHODS: Literature searches were conducted using the following databases Web of Science, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, and Cochrane from January 2000 to February 2023 for articles dealing with oxytocin neuroprotective properties in preventing or treating neurodegenerative disorders and diseases with a focus on oxidative stress, inflammation, and apoptosis/cell death. RESULTS: The neuroprotective effects of oxytocin appears to be mediated by its anti-inflammatory properties, inhibition of neuro inflammation, activation of several antioxidant enzymes, inhibition of oxidative stress and free radical formation, activation of free radical scavengers, prevent of mitochondrial dysfunction, and inhibition of apoptosis. CONCLUSION: Oxytocin acts as a neuroprotective agent by preventing neuro-apoptosis, neuro-inflammation, and neuronal oxidative stress, and by restoring mitochondrial function.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Humanos , Antioxidantes/farmacologia , Ocitocina/farmacologia , Estresse Oxidativo , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Fármacos Neuroprotetores/farmacologia , Apoptose
6.
Acta Neurobiol Exp (Wars) ; 83(1): 71-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37078816

RESUMO

The potential of minocycline to protect against methylphenidate­induced neurodegeneration has been extensively reported in the literature but the mechanism of action is still unknown. This study aims to determine the role of mitochondrial chain enzymes and redox homeostasis on the neuroprotective effects of minocycline in methylphenidate­induced neurodegeneration. Wistar adult male rats were randomly assigned to the seven experimental groups: Group 1 received saline solution; Group 2 received methylphenidate (10 mg/kg, i.p.); Groups 3, 4, 5, and 6 received methylphenidate and minocycline for 21 days; Group 7 received minocycline alone. Cognition was evaluated with the Morris water maze test. Activity of the hippocampal mitochondrial quadruple complexes I, II, III and IV, mitochondrial membrane potential, adenosine triphosphate (ATP) levels, total antioxidant capacity, and reactive oxygen species were determined. Treatment with minocycline inhibited methylphenidate­induced cognitive dysfunction. Minocycline treatment increased mitochondrial quadruple complex activities, mitochondrial membrane potential, total antioxidant capacity, and ATP levels in the dentate gyrus and cornu ammonis­1 (CA1) areas of the hippocampus. Minocycline is likely to confer neuroprotection against methylphenidate­induced neurodegeneration and cognition impairment by regulating mitochondrial activity and oxidative stress.


Assuntos
Disfunção Cognitiva , Metilfenidato , Fármacos Neuroprotetores , Ratos , Animais , Masculino , Minociclina/farmacologia , Minociclina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Ratos Wistar , Disfunção Cognitiva/tratamento farmacológico , Hipocampo/metabolismo , Estresse Oxidativo , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Cognição , Mitocôndrias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
7.
Pharmacol Rep ; 75(3): 511-543, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37093496

RESUMO

Diabetes mellitus (DM) is a metabolic disease that activates several molecular pathways involved in neurodegenerative disorders. Metformin, an anti-hyperglycemic drug used for treating DM, has the potential to exert a significant neuroprotective role against the detrimental effects of DM. This review discusses recent clinical and laboratory studies investigating the neuroprotective properties of metformin against DM-induced neurodegeneration and the roles of various molecular pathways, including mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, and its related cascades. A literature search was conducted from January 2000 to December 2022 using multiple databases including Web of Science, Wiley, Springer, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, Scopus, and the Cochrane Library to collect and evaluate peer-reviewed literature regarding the neuroprotective role of metformin against DM-induced neurodegenerative events. The literature search supports the conclusion that metformin is neuroprotective against DM-induced neuronal cell degeneration in both peripheral and central nervous systems, and this effect is likely mediated via modulation of oxidative stress, inflammation, and cell death pathways.


Assuntos
Diabetes Mellitus , Metformina , Fármacos Neuroprotetores , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neuroproteção , Inflamação/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico
8.
Toxicol Mech Methods ; 33(7): 607-623, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37051630

RESUMO

Tramadol (TRA) causes neurotoxicity whereas trimetazidine (TMZ) is neuroprotective. The potential involvement of the PI3K/Akt/mTOR signaling pathway in the neuroprotection of TMZ against TRA-induced neurotoxicity was evaluated. Seventy male Wistar rats were divided into groups. Groups 1 and 2 received saline or TRA (50 mg/kg). Groups 3, 4, and 5 received TRA (50 mg/kg) and TMZ (40, 80, or 160 mg/kg) for 14 days. Group 6 received TMZ (160 mg/kg). Hippocampal neurodegenerative, mitochondrial quadruple complex enzymes, phosphatidylinositol-3-kinases (PI3Ks)/protein kinase B levels, oxidative stress, inflammatory, apoptosis, autophagy, and histopathology were evaluated. TMZ decreased anxiety and depressive-like behavior induced by TRA. TMZ in tramadol-treated animals inhibited lipid peroxidation, GSSG, TNF-α, and IL-1ß while increasing GSH, SOD, GPx, GR, and mitochondrial quadruple complex enzymes in the hippocampus. TRA inhibited Glial fibrillary acidic protein expression and increased pyruvate dehydrogenase levels. TMZ reduced these changes. TRA decreased the level of JNK and increased Beclin-1 and Bax. TMZ decreased phosphorylated Bcl-2 while increasing the unphosphorylated form in tramadol-treated rats. TMZ activated phosphorylated PI3Ks, Akt, and mTOR proteins. TMZ inhibited tramadol-induced neurotoxicity by modulating the PI3K/Akt/mTOR signaling pathways and its downstream inflammatory, apoptosis, and autophagy-related cascades.


Assuntos
Fármacos Neuroprotetores , Síndromes Neurotóxicas , Tramadol , Trimetazidina , Masculino , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Trimetazidina/farmacologia , Tramadol/toxicidade , Neuroproteção , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Apoptose , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Autofagia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
9.
Fundam Clin Pharmacol ; 37(1): 4-30, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35996185

RESUMO

Neurodegeneration is a pathological process characterized by progressive neuronal impairment, dysfunction, and loss due to mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Many studies have shown that lithium protects against neurodegeneration. Herein, we summarize recent clinical and laboratory studies on the neuroprotective effects of lithium against neurodegeneration and its potential to modulate mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Recent findings indicate that lithium regulates critical intracellular pathways such as phosphatidylinositol-3 (PI3)/protein kinase B (Akt)/glycogen synthase kinase-3 (GSK3ß) and PI3/Akt/response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF). We queried PubMed, Web of Science, Scopus, Elsevier, and other related databases using search terms related to lithium and its neuroprotective effect in various neurodegenerative diseases and events from January 2000 to May 2022. We reviewed the major findings and mechanisms proposed for the effects of lithium. Lithium's neuroprotective potential against neural cell degeneration is mediated by inducing anti-inflammatory factors, antioxidant enzymes, and free radical scavengers to prevent mitochondrial dysfunction. Lithium effects are regulated by two essential pathways: PI3/Akt/GSK3ß and PI3/Akt/CREB/BDNF. Lithium acts as a neuroprotective agent against neurodegeneration by preventing inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction using PI3/Akt/GSK3ß and PI3/Akt/CREB/BDNF signaling pathways.


Assuntos
Lítio , Fármacos Neuroprotetores , Humanos , Lítio/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Apoptose , Inflamação/tratamento farmacológico
10.
Biol Trace Elem Res ; 201(8): 3861-3881, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36378265

RESUMO

titania (titanium dioxide, TiO2) is known to induce neurotoxicity and CNS dysfunctions. Numerous studies have explored the neuroprotective effects of melatonin against neurotoxicity. This study evaluates the potential of melatonin to protect against titania-induced neurotoxicity and the role of the Keap1/Nrf2/ARE signaling pathway. One group of animals were treated with Titania (0.045 and 0.075 g/rat) alone while the other with added melatonin (1 mg/kg and 3 mg/kg) and behavioral alterations were assessed using OFT (open field test). Neurochemical and histopathological changes were also studied in the hippocampus by analyzing kelch ECH associating protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and antioxidant response element (ARE). It was seen that the animals with added Melatonin had improved behavioral scores in the OFT, like anxiety and motor dysfunction triggered by TiO2. Melatonin also reduced lipid peroxidation, ROS, GSSG, IL1ß, TNFα, Bax, and Keap1 levels, but boosted GSH, GPx, GR, SOD,IL10,IL4, Bcl2, Nrf2, and ARE levels and improved quadruple mitochondrial enzyme complex activity in titania-treated animals. Histopathological examination showed melatonin induced cytoprotection against vacuolization and necrosis in granular cells of DG and pyramidal cells of CA1 area of the hippocampus. In our study, pretreatment with melatonin reduced titania-induced neurotoxicity in the hippocampus through a mechanism potentially mediated by the Keap-1/Nrf2/ARE pathway.


Assuntos
Melatonina , Síndromes Neurotóxicas , Ratos , Animais , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo
12.
Biologia (Bratisl) ; 77(10): 3027-3035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966933

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19) is a respiratory disease that causes dysfunction in respiration. Since late 2019, this virus has infected and killed millions of people around the world and imposed many medical and therapeutic problems in the form of a pandemic. According to recent data, COVID-19 disease can increase the risk of stroke, which can be deadly or cause many neurological disorders after the disease. During the last two years, many efforts have been made to introduce new therapies for management of COVID-19-related complications, including stroke. To achieve this goal, several conventional drugs have been investigated for their possible therapeutic roles. Minocycline, a broad-spectrum, long-acting antibiotic with anti-inflammatory and antioxidant properties, is one such conventional drug that should be considered for treating COVID-19-related stroke, as indirect evidence indicates that it exerts neuroprotective effects, can modulate stroke occurrence, and can play an effective and strategic role in management of the molecular signals caused by stroke and its destructive consequences. The matrix metalloprotease (MMP) signaling pathway is one of the main signaling pathways involved in the occurrence and exacerbation of stroke; however, its role in COVID-19-induced stroke and the possible role of minocycline in the management of this signaling pathway in patients with COVID-19 is unclear and requires further investigation. Based on this concept, we hypothesize that minocycline might act via MMP signaling as a neuroprotective agent against COVID-19-induced neurological dysfunction, particularly stroke.

13.
Int J Prev Med ; 13: 65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35706867

RESUMO

Background: As a psychostimulant agent, methylphenidate (MPH) abuse can cause serious liver damage. Studies have documented the hepatoprotective impacts of curcumin on liver damage. According to this definition, the purpose of this study is to explain the hapatoprotective effects of curcumin against the hepatotoxicity induced by MPH. Methods: Seventy rats were equally divided into seven groups (10 rats per group). Groups 1 and 2 received normal saline (0.7 mL/rat) and MPH (10 mg/kg), respectively for 21 days. Groups 3, 4, 5, and 6 concurrently received MPH (10 mg/ kg) and curcumin (10, 20, 40, and 60 mg/kg, respectively) for 21 days. Group 7 was treated with curcumin (60 mg/kg) alone for 21 days. The hepatic function test key enzymes such as AST, ALP, and histology of liver tissue (ALT), and alkaline phosphatase (ALP) levels was studied in the blood samples, and also, the histopathological changes and cell density changes were evaluated in the liver tissue. Results: The latest studies have shown that the administration of MPH induces rises in the AST, ALT, and ALP levels and induces degeneration changes in histopathology, whereas curcumin administration at doses of 40 and 60 mg/kg reduced the elevation of MPH-induced hepatic enzyme and inhibited histopathological degeneration in the MPH-treated classes. Curcumin alone (60 mg/kg) did not alter the biochemical and histological parameters. Conclusions: Curcumin can function as a hepatoprotective agent against MPH-induced hepatotoxicity.

14.
Neurotox Res ; 40(3): 689-713, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35446003

RESUMO

Neurodegeneration is a side effect of methylphenidate (MPH), and minocycline possesses neuroprotective properties. This study aimed to investigate the neuroprotective effects of minocycline against methylphenidate-induced neurodegeneration mediated by signaling pathways of CREB/BDNF and Akt/GSK3. Seven groups of seventy male rats were randomly distributed in seven groups (n = 10). Group 1 received 0.7 ml/rat of normal saline (i.p.), and group 2 was treated with MPH (10 mg/kg, i.p.). Groups 3, 4, 5, and 6 were simultaneously administered MPH (10 mg/kg) and minocycline (10, 20, 30, and 40 mg/kg, i.p.) for 21 days. Minocycline alone (40 mg/kg, i.p.) was administrated to group 7. Open field test (OFT) (on day 22), forced swim test (FST) (on day 24), and elevated plus maze (on day 26) were conducted to analyze the mood-related behaviors; hippocampal oxidative stress, inflammatory, and apoptotic parameters, as well as the levels of protein kinase B (Akt-1), glycogen synthase kinase 3 (GSK3), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF), were also assessed. Furthermore, localization of total CREB, Akt, and GSK3 in the DG and CA1 areas of the hippocampus were measured using immunohistochemistry (IHC). Histological changes in the mentioned areas were also evaluated. Minocycline treatment inhibited MPH-induced mood disorders and decreased lipid peroxidation, oxidized form of glutathione (GSSG), interleukin 1 beta (IL-1ß), alpha tumor necrosis factor (TNF-α), Bax, and GSK3 levels. In the contrary, it increased the levels of reduced form of glutathione (GSH), Bcl-2, CREB, BDNF, and Akt-1 and superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in the experimental animals' hippocampus. IHC data showed that minocycline also improved the localization and expression of CREB and Akt positive cells and decreased the GSK3 positive cells in the DG and CA1 regions of the hippocampus of MPH-treated rats. Minocycline also inhibited MPH-induced changes of hippocampal cells' density and shape in both DG and CA1 areas of the hippocampus. According to obtained data, it can be concluded that minocycline probably via activation of the P-CREB/BDNF or Akt/GSK3 signaling pathway can confer its neuroprotective effects against MPH-induced neurodegeneration.


Assuntos
Minociclina , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glutationa/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/metabolismo , Masculino , Metilfenidato/toxicidade , Minociclina/uso terapêutico , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais
15.
Int J Prev Med ; 13: 156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36911003

RESUMO

The current pandemic coronavirus disease-19 (COVID-19) is still a global medical and economic emergency with over 244 million confirmed infections and over 4.95 million deaths by October 2021, in less than 2 years. Severe acute respiratory syndrome (SARS), the Middle East respiratory syndrome coronavirus (MERS), and COVID-19 are three recent coronavirus pandemics with major medical and economic implications. Currently, there is no effective treatment for these infections. One major pathological hallmark of these infections is the so-called 'cytokine storm,' which depicts an unregulated production of inflammatory cytokines inducing detrimental inflammation leading to organ injury and multiple organ failure including severe pulmonary, cardiovascular, and kidney failure in COVID-19. Several studies have suggested the potential of curcumin to inhibit the replication of some viruses similar to coronaviruses. Multiple experimental and clinical studies also reported the anti-inflammatory potential of curcumin in multiple infectious and inflammatory disorders. Thus, we hypothesized that curcumin may provide antiviral and anti-inflammatory effects for treating COVID-19. Although these studies suggest that curcumin could serve as an adjuvant treatment for COVID-19, its molecular mechanisms are still debated, especially its potential to modulate the toll-like receptors/TIR-domain-containing adapter-inducing interferon-ß/nuclear factor kappa-light-chain-enhancer of activated B cells (TLR/TRIF/NF-κB) pathway. The preliminary results showed that curcumin modulates the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, a common pathway controlling cytokine production in multiple infectious and inflammatory disorders. Here, we hypothesize and discuss whether curcumin treatment may provide antiviral and anti-inflammatory clinical advantages for treating COVID-19 by modulating the TLR/TRIF/NF-κB pathway. We also review the current data on curcumin and discuss potential experimental and clinical studies that require defining its potential clinical implications in COVID-19.

17.
Physiol Behav ; 244: 113652, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801559

RESUMO

INTRODUCTION: Memory is defined as the ability to store, maintain and retrieve information. Learning is the acquisition of information that changes behavior and memory. Stress, dementia, head trauma, amnesia, Alzheimer's, Huntington, Parkinson's, Wernicke-Korsakoff syndrome (WKS) may be mentioned among the diseases in which memory and learning are affected. The task of understanding deficits in memory and learning in humans is daunting due to the complexity of neural and cognitive mechanisms in the nervous system. This job is made more difficult for clinicians and researchers by the fact that many techniques used to research memory are not ethically acceptable or technically feasible for use in humans. Thus, animal models have been necessary alternative for studying normal and disordered learning and memory. This review attempts to bridge these domains to allow biomedical researchers to have a firm grasp of "memory" and "learning" as constructs in humans whereby they may then select the proper animal cognitive test. RESULTS AND CONCLUSION: Various tests (open field habituation test, Y-maze test, passive avoidance test, step-down inhibitory avoidance test, active avoidance test, 8-arms radial maze test, Morris water maze test, radial arm water maze, novel object recognition test and gait function test) have been designed to evaluate different kinds of memory. Each of these tests has their strengths and limits. Abnormal results obtained using these tasks in non-human animals indicate malfunctions in memory which may be due to several physiological and psychological diseases of nervous system. Further studies by using the discussed tests can be very beneficial for achieving a therapeutic answer to these diseases.


Assuntos
Amnésia , Cognição , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal , Modelos Animais de Doenças , Humanos , Aprendizagem em Labirinto/fisiologia
18.
Int J Neurosci ; 132(12): 1198-1209, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33428483

RESUMO

Propose/aim of study: Forced exercise can act as a neuroprotective factor and cognitive enhancer. The aim of the current study was to evaluate the effects of forced exercise on topiramate (TPM) induced cognitive impairment and also on TPM anti-seizure activity and neurodegeneration status after seizure.Material and method: Forty adult male rats were divided into four groups receiving normal saline, TPM (100 mg/kg), TPM in combination with forced exercise and forced exercise only respectively for 21 days. MWM test, and PTZ induced seizure were used and some oxidative, inflammatory and apoptotic biomarkers were measured for assessment of experimental animals.Results: Forced exercise in combination with TPM could abolish the TPM induced cognitive impairment and potentiates its anti-seizure activity. Also forced exercise in combination with TPM decreased malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß) and Bax protein, while caused increase in superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities after PTZ administration.Conclusion: It seems that forced exercise could act as an adjunct therapy with TPM for management of induced cognitive impairment and can also potentiate TPM antiepileptic and neuroprotective effects.


Assuntos
Disfunção Cognitiva , Metilfenidato , Masculino , Ratos , Animais , Topiramato/farmacologia , Anticonvulsivantes/farmacologia , Metilfenidato/farmacologia , Frutose/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estresse Oxidativo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/prevenção & controle , Antioxidantes/metabolismo , Cognição
19.
Basic Clin Neurosci ; 12(3): 325-338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917292

RESUMO

INTRODUCTION: The neuroprotective impact of curcumin and the role of CREB (Cyclic AMP Response Element Binding protein)-BDNF (Brain-Derived Neurotrophic Factor) signaling pathway was evaluated in Methamphetamine (METH)-induced neurodegeneration in rats. METHODS: Sixty adult male rats were randomly divided into 6 groups. While normal saline and 10 mg/kg METH were administered intraperitoneally in groups 1 and 2, groups 3, 4, 5, and 6 received METH (10 mg/kg) and curcumin (10, 20, 40, and 80 mg/kg, respectively) simultaneously. Morris water maze test was administered, and oxidative hippocampal, antioxidant, inflammatory, apoptotic, and CREB and BDNF were assessed. RESULTS: We found that METH disturbs learning and memory. Concurrent curcumin therapy (40 and 80 mg/kg) decreased cognitive disturbance caused by METH. Multiple parameters, such as lipid peroxidation, the oxidized form of glutathione, interleukin 1 beta, tumor necrosis factor-alpha, and Bax were increased by METH therapy, while the reduced type of glutathione, Bcl-2, P-CREB, and BDNF concentrations in the hippocampus were decreased. CONCLUSION: Different doses of curcumin adversely attenuated METH-induced apoptosis, oxidative stress, and inflammation but enhanced the concentrations of P-CREB and BDNF. The neuroprotection caused by curcumin against METH-induced neurodegeneration is mediated through P-CREB-BDNF signaling pathway activation.

20.
Iran J Pharm Res ; 20(1): 418-436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400970

RESUMO

Previous studies have shown that alcohol abuse can cause serious liver damage and cirrhosis. The main pathway for these types of hepatocellular cell neurodegeneration is mitochondrial dysfunction, which causes lipid peroxidation and dysfunction of the glutathione ring and the defect of antioxidant enzymes in alcoholic hepatic cells. Alcohol can also initiate malicious inflammatory pathways and trigger the initiation and activation of intestinal and extrinsic apoptosis pathways in hepatocellular tissues that lead to cirrhosis. Previous studies have shown that curcumin may inhibit lipid peroxidation, glutathione dysfunction and restore antioxidant enzymes. Curcumin also modulates inflammation and the production of alcohol-induced biomarkers. Curcumin has been shown to play a critical role in the survival of alcoholic hepatocellular tissue. It has been shown that curcumin can induce and trigger mitochondrial biogenesis and, by this mechanism, prevent the occurrence of both intrinsic and extrinsic apoptosis pathways in liver cells that have been impaired by alcohol. According to this mechanism, curcumin may protect hepatocellular tissue from alcohol-induced cell degeneration and may therefore survive alcoholic hepatocellular tissue. . Based on these mechanisms, the protective functions of curcumin against alcohol-induced cell degeneration due to oxidative stress, inflammation, and apoptosis events in hepatocellular tissue have been recorded. Hence, in this research, we have attempted to evaluate and analyze the main contribution mechanism of curcumin cell defense properties against alcohol-induced hepatocellular damage, according to previous experimental and clinical studies, and in this way we report findings from major studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...